Deprecated: Required parameter $newvalue follows optional parameter $option in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 145

Deprecated: Required parameter $newvalue follows optional parameter $option in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 159

Deprecated: Required parameter $directory follows optional parameter $username in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 292
Walter Gavira apresenta tese sobre Campos Modulares - IMPA - Instituto de Matemática Pura e Aplicada
Este é um ambiente de STAGING. Não é o site de produção!
Voltar para notícias

Walter Gavira apresenta tese sobre Campos Modulares

O doutorando Walter Andres Paez Gavira apresenta, nesta segunda-feira (06), a tese “Campos Modulares para Superfícies Polarizadas K3”. O trabalho, orientado pelo pesquisador Hossein Movasati, será apresentado às 10h30 com transmissão pelo Youtube do IMPA. Participam da banca os professores Alcides Lins Neto, do IMPA; Adrian Clingher, da Universidade de Missouri-St. Louis, nos Estados Unidos; Roberto Villaflor, do IMPA e da Pontificia Universidad Católica de Chile; Jin Cao, da Universidade Tsinghua, na China; e Younes Nikdelan, da Universidade Estadual do Rio de Janeiro (Uerj).

Na tese, Gavira obtém uma generalização da noção de forma modular de Siegel de gênero dois, que é um análogo da extensão das formas modulares elípticas clássicas para formasquase modulares. Para isso, é definida a álgebra das formas quase modulares de Siegel algébricas como a álgebra das funções regulares globais de um espaço de moduli T de superfícies K3 aprimoradas com alguns dados cohomológicos, que têm a estrutura de uma variedade quase-afim complexa. 

Um grupo algébrico G que contém os dados automórficos das formas quase modulares anteriores é calculado. A álgebra anterior é dotada de uma estrutura de álgebra diferencial, cujas derivações provêm de três campos vetoriais algébricos definidos no espaço de moduli T. Esses campos vetoriais são a generalização, para o contexto desta tese, das identidades de Ramanujan entre as séries de Eisenstein. 

Usando algumas considerações transcendentais, construímos um mapa do meio-espaço superior de Siegel do gênero dois para o espaço de moduli T, o que nos permite puxar formas quase modulares de Siegel algébricas para obter formas quase modulares de Siegel como funções holomorfas em o meio-espaço superior de Siegel do gênero dois.