Este é um ambiente de STAGING. Não é o site de produção!

A homologia de Floer de uma Hamiltoniana autônoma C^2-pequena é isomorfa à homologia de Morse. Invariância da homologia de Floer. Possíveis tópicos adicionais: homologia de Floer de fibrados cotangentes, homologia simplética, homologia simplética equivariante, teoria simplética de campos.

Referências:
M. Audin, M. Damian, “Morse theory and Floer homology”, Universitext. London: Springer; Les Ulis: EDP Sciences (ISBN 978-1-4471-5495-2/pbk; 978-1-4471-5496-9/ebook). xiv, 596 p. (2014).
D. Salamon, “Lectures on Floer homology”, Eliashberg, Yakov (ed.) et al., Symplectic geometry and topology. Lecture notes from the graduate summer school program, Park City, UT, USA, June 29-July 19, 1997. Providence, RI: American Mathematical Society. IAS/ Park City Math. Ser. 7, 145-229 (1999).
F. Laudenbach, “Symplectic geometry and Floer homology”, pp. 1–50. Sociedade Brasileira de Matemática (2004).
M. Schwarz, “Morse homology”, Progress in Mathematics (Boston, Mass.). 111. Basel: Birkhäuser Verlag. ix, 235 p. (1993).
D. McDuff, D. Salamon, “J-Holomorphic Curves and Symplectic Topology”. American Mathematical Society Colloquium Publications, vol. 52. Am. Math. Soc., Providence (2004).
H. Hofer, E. Zehnder, “Symplectic Invariants and Hamiltonian Dynamics”, Mod. Birkhäuser Class. Birkhäuser Verlag, Basel, 2011. xiv+341 pp.
A. Oancea, “A survey of Floer homology for manifolds with contact type boundary or symplectic homology”, Ensaios Mat., 7[Mathematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2004, 51–91.
A. Abbondandolo, M. Schwarz, “On the Floer homology of cotangent bundles”, Comm. Pure Appl. Math. 59 (2006), no. 2, 254–316. Corrigendum in Comm. Pure Appl. Math. 67 (2014), no. 4, 670–691.
F. Bourgeois, A. Oancea, “S^1-equivariant symplectic homology and linearized contact homology”, Int. Math. Res. Not. IMRN 2017, no. 13, 3849–3937.
Y. Eliashberg, A. Givental, H. Hofer, “ Introduction to symplectic field theory”, Geom. Funct. Anal. 2000, 560–673.