Processos de Wiener de dimensão infinita. Martingais em espaços de Banach gerais. Definição de integral estocástica. Propriedades da integral Estocástica Processos de Wiener cilíndricos. Formula de Ito. Desigualdades de Burkholder e Burkholder-Davis-Gundy. Uma formula de It generalizada. EDPE’s parabólicas degeneradas. Definições. Princípio da comparação. Existência: Caso não-degenerado; Função de fluxo Lipschitz contínua. Existência para o caso não-degenerado: Função de fluxo com crescimento polinomial. Existência para o caso degenerado–dado inicial suave. Existência para o caso degenerado: dado inicial geral.
Referências:
[1] C. Bauzet, G. Vallet, P. Wittbold. The Cauchy problem for conservation laws with a mul-tiplicative stochastic perturbation. Journal of Hyperbolic Differential Equations 9, No. 4 (2012), 661–709.
[2] C. Bauzet, G. Vallet, P. Wittbold. A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force. Journal of Hyperbolic Differential Equations 12, No. 3 (2015), 501–533.
[3] P. Billingsley. “Probability and Measure”. Third Edition, John Wiley & Sons, Inc., 1995.
[4] P. Billingsley. “Convergence of Probabity Measures”–2nd ed. John Willey & Sons, 1999.
[5] D.L. Burkholder, B.J. Davis, R.F. Gundy. Integral inequalities for convex functions of operators on martingales. Berkeley Symp. on Math. Statist.and Prob. Proc. Sixth Berkeley Symp. on Math. Statist. and Prob., Vol. 2 (Univ. of Calif. Press, 1972), 223–240.
[6] G. Da Prato, J. Zabczyk. “Stochastic Differential Equations in Infinite Dimensions”. Cam-bridge University Press, 1992.
[7] A. Debussche, J. Vovelle. Scalar conservation laws with stochastic forcing. Journal of Functional Analysis 259 (2010), 1014-1042.
[8] A. Debussche, M. Hofmanova, J. Vovelle. Degenerate parabolic stochastic partial differential equations: quasilinear case. The Annals of Probability 44, No. 3 (2016), 1916–1955.
[9] M. Hofmanov´a. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123 (2013), 4294–4336.
[10] M. Hofmanov´a. Strong solutions of semilinear stochastic differential equations. No DEA Non-linear Differential Equations Appl. 20 (2013), 757-778.
[11] I. Karatzas, S.E. Shreve. “Brownian Motion and Stochastic Calculus”. (Second Edition) Springer Science+Business Media, Inc. in 1998.
[12] M. Ondrejat. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae 426 (2004), Polska Akademia Nauk, Instytut Matematyczny.
[13] C. Pr´evˆot, M. Rockner. “A Concise Course on Stochastic Partial Differential Equations”. Lecture Notes in Mathematics 1905, Springer-Verlag Berlin Heidelberg 2007.
* Ementa básica. O professor tem autonomia para efetuar qualquer alteração.