Deprecated: Required parameter $newvalue follows optional parameter $option in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 145

Deprecated: Required parameter $newvalue follows optional parameter $option in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 159

Deprecated: Required parameter $directory follows optional parameter $username in /srv/www/impa-dev.kindle.com.br/public_www/wp-content/plugins/impa-ldap-login/IMPA-LDAP-Login.php on line 292
Toric contact manifolds - IMPA - Instituto de Matemática Pura e Aplicada
Este é um ambiente de STAGING. Não é o site de produção!

Toric contact manifolds provide an interesting class of contact manifolds. In this mini-course we will introduce them, show how the ones with zero first Chern class can be determined by certain integral convex polytopes, called toric diagrams, and how to directly read relevant contact invariants from these toric diagrams. Plenty of hands-on examples and some applications will be provided.

References:
M. Abreu and L. Macarini. Contact homology of good toric contact manifolds. Compos. Math., 148 (2012), 304–334.
M. Abreu and L. Macarini. On the mean Euler characteristic of Gorenstein toric contact manifolds. Int. Math. Res. Not. IMRN, 14 (2020), 4465–4495.
M. Abreu, L. Macarini and M. Moreira. On contact invariants of non-simply connected Gorenstein toric contact manifolds. Mathematical Research Letters, 29 (2022), 1-42
M. Abreu, L. Macarini and M Moreira. Contact invariants of Q-Gorenstein toric contact manifolds, the Ehrhart polynomial and Chen-Ruan cohomology. Preprint (2022), arXiv:2202.00442, to appear in Advances in Mathematics.
A. Cannas da Silva. Symplectic toric manifolds, in “Symplectic geometry of integrable Hamiltonian systems” (Barcelona, 2001), 85–173, 2003.
E. Lerman. Contact toric manifolds.
J. Symplectic Geom., 1 (2003), 785–828, 2003.